Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann N Y Acad Sci ; 1521(1): 46-66, 2023 03.
Artigo em Inglês | MEDLINE | ID: covidwho-2228475

RESUMO

Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Humanos , SARS-CoV-2 , Vírus de RNA de Cadeia Positiva , Antivirais/uso terapêutico , Pandemias , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/tratamento farmacológico
2.
Antiviral Res ; 206: 105403, 2022 10.
Artigo em Inglês | MEDLINE | ID: covidwho-2003860

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) and the associated global pandemic resulting in >400 million infections worldwide and several million deaths. The continued evolution of SARS-CoV-2 to potentially evade vaccines and monoclonal antibody (mAb)-based therapies and the limited number of authorized small-molecule antivirals necessitates the need for development of new drug treatments. There remains an unmet medical need for effective and convenient treatment options for SARS-CoV-2 infection. SARS-CoV-2 is an RNA virus that depends on host intracellular ribonucleotide pools for its replication. Dihydroorotate dehydrogenase (DHODH) is a ubiquitous host enzyme that is required for de novo pyrimidine synthesis. The inhibition of DHODH leads to a depletion of intracellular pyrimidines, thereby impacting viral replication in vitro. Brequinar (BRQ) is an orally available, selective, and potent low nanomolar inhibitor of human DHODH that has been shown to exhibit broad spectrum inhibition of RNA virus replication. However, host cell nucleotide salvage pathways can maintain intracellular pyrimidine levels and compensate for BRQ-mediated DHODH inhibition. In this report, we show that the combination of BRQ and the salvage pathway inhibitor dipyridamole (DPY) exhibits strong synergistic antiviral activity in vitro against SARS-CoV-2 by enhanced depletion of the cellular pyrimidine nucleotide pool. The combination of BRQ and DPY showed antiviral activity against the prototype SARS-CoV-2 as well as the Beta (B.1.351) and Delta (B.1.617.2) variants. These data support the continued evaluation of the combination of BRQ and DPY as a broad-spectrum, host-acting antiviral strategy to treat SARS-CoV-2 and potentially other RNA virus infections.


Assuntos
Tratamento Farmacológico da COVID-19 , Vírus de RNA , Antivirais/farmacologia , Antivirais/uso terapêutico , Compostos de Bifenilo , Dipiridamol/farmacologia , Humanos , Quinaldinas , SARS-CoV-2 , Replicação Viral
3.
SLAS Discov ; 27(1): 8-19, 2022 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1641663

RESUMO

The severe acute respiratory syndrome coronavirus 2 responsible for COVID-19 remains a persistent threat to mankind, especially for the immunocompromised and elderly for which the vaccine may have limited effectiveness. Entry of SARS-CoV-2 requires a high affinity interaction of the viral spike protein with the cellular receptor angiotensin-converting enzyme 2. Novel mutations on the spike protein correlate with the high transmissibility of new variants of SARS-CoV-2, highlighting the need for small molecule inhibitors of virus entry into target cells. We report the identification of such inhibitors through a robust high-throughput screen testing 15,000 small molecules from unique libraries. Several leads were validated in a suite of mechanistic assays, including whole cell SARS-CoV-2 infectivity assays. The main lead compound, calpeptin, was further characterized using SARS-CoV-1 and the novel SARS-CoV-2 variant entry assays, SARS-CoV-2 protease assays and molecular docking. This study reveals calpeptin as a potent and specific inhibitor of SARS-CoV-2 and some variants.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Catepsina L/antagonistas & inibidores , Linhagem Celular , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
4.
Sci Rep ; 11(1): 18285, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: covidwho-1410888

RESUMO

Serological assays intended for diagnosis, sero-epidemiologic assessment, and measurement of protective antibody titers upon infection or vaccination are essential for managing the SARS-CoV-2 pandemic. Serological assays measuring the antibody responses against SARS-CoV-2 antigens are readily available. However, some lack appropriate characteristics to accurately measure SARS-CoV-2 antibodies titers and neutralization. We developed an Enzyme-linked Immunosorbent Assay (ELISA) methods for measuring IgG, IgA, and IgM responses to SARS-CoV-2, Spike (S), receptor binding domain (RBD), and nucleocapsid (N) proteins. Performance characteristics of sensitivity and specificity have been defined. ELISA results show positive correlation with microneutralization and Plaque Reduction Neutralization assays with infectious SARS-CoV-2. Our ELISA was used to screen healthcare workers in Louisville, KY during the first wave of the local pandemic in the months of May and July 2020. We found a seropositive rate of approximately 1.4% and 2.3%, respectively. Our analyses demonstrate a broad immune response among individuals and suggest some non-RBD specific S IgG and IgA antibodies neutralize SARS-CoV-2.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Área Sob a Curva , COVID-19/sangue , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Kentucky/epidemiologia , Pandemias , Fosfoproteínas/imunologia , Curva ROC , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Sci Rep ; 11(1): 15715, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1341011

RESUMO

Key elements for viral pathogenesis include viral strains, viral load, co-infection, and host responses. Several studies analyzing these factors in the function of disease severity of have been published; however, no studies have shown how all of these factors interplay within a defined cohort. To address this important question, we sought to understand how these four key components interplay in a cohort of COVID-19 patients. We determined the viral loads and gene expression using high throughput sequencing and various virological methods. We found that viral loads in the upper respiratory tract in COVID-19 patients at an early phase of infection vary widely. While the majority of nasopharyngeal (NP) samples have a viral load lower than the limit of detection of infectious viruses, there are samples with an extraordinary amount of SARS-CoV-2 RNA and a high viral titer. No specific viral factors were identified that are associated with high viral loads. Host gene expression analysis showed that viral loads were strongly correlated with cellular antiviral responses. Interestingly, however, COVID-19 patients who experience mild symptoms have a higher viral load than those with severe complications, indicating that naso-pharyngeal viral load may not be a key factor of the clinical outcomes of COVID-19. The metagenomics analysis revealed that the microflora in the upper respiratory tract of COVID-19 patients with high viral loads were dominated by SARS-CoV-2, with a high degree of dysbiosis. Finally, we found a strong inverse correlation between upregulation of interferon responses and disease severity. Overall our study suggests that a high viral load in the upper respiratory tract may not be a critical factor for severe symptoms; rather, dampened antiviral responses may be a critical factor for a severe outcome from the infection.


Assuntos
COVID-19/patologia , Interferons/metabolismo , SARS-CoV-2/genética , Adulto , Idoso , COVID-19/virologia , Disbiose/etiologia , Feminino , Humanos , Masculino , Metagenômica , Microbiota/genética , Pessoa de Meia-Idade , Nasofaringe/virologia , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Transcriptoma , Regulação para Cima , Carga Viral
6.
Mol Ther ; 29(8): 2424-2440, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1225433

RESUMO

Lung inflammation is a hallmark of coronavirus disease 2019 (COVID-19). In this study, we show that mice develop inflamed lung tissue after being administered exosomes released from the lung epithelial cells exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp12 and Nsp13 (exosomesNsp12Nsp13). Mechanistically, we show that exosomesNsp12Nsp13 are taken up by lung macrophages, leading to activation of nuclear factor κB (NF-κB) and the subsequent induction of an array of inflammatory cytokines. Induction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß from exosomesNsp12Nsp13-activated lung macrophages contributes to inducing apoptosis in lung epithelial cells. Induction of exosomesNsp12Nsp13-mediated lung inflammation was abolished with ginger exosome-like nanoparticle (GELN) microRNA (miRNA aly-miR396a-5p. The role of GELNs in inhibition of the SARS-CoV-2-induced cytopathic effect (CPE) was further demonstrated via GELN aly-miR396a-5p- and rlcv-miR-rL1-28-3p-mediated inhibition of expression of Nsp12 and spike genes, respectively. Taken together, our results reveal exosomesNsp12Nsp13 as potentially important contributors to the development of lung inflammation, and GELNs are a potential therapeutic agent to treat COVID-19.


Assuntos
COVID-19/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Plantas/metabolismo , Pneumonia/metabolismo , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , SARS-CoV-2/patogenicidade , Fator de Necrose Tumoral alfa/metabolismo , Células U937 , Células Vero
7.
Pharmaceuticals (Basel) ; 14(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: covidwho-1159380

RESUMO

Viral infections, such as those caused by Herpes Simplex Virus-1 (HSV-1) and SARS-CoV-2, affect millions of people each year. However, there are few antiviral drugs that can effectively treat these infections. The standard approach in the development of antiviral drugs involves the identification of a unique viral target, followed by the design of an agent that addresses that target. Antimicrobial peptides (AMPs) represent a novel source of potential antiviral drugs. AMPs have been shown to inactivate numerous different enveloped viruses through the disruption of their viral envelopes. However, the clinical development of AMPs as antimicrobial therapeutics has been hampered by a number of factors, especially their enzymatically labile structure as peptides. We have examined the antiviral potential of peptoid mimics of AMPs (sequence-specific N-substituted glycine oligomers). These peptoids have the distinct advantage of being insensitive to proteases, and also exhibit increased bioavailability and stability. Our results demonstrate that several peptoids exhibit potent in vitro antiviral activity against both HSV-1 and SARS-CoV-2 when incubated prior to infection. In other words, they have a direct effect on the viral structure, which appears to render the viral particles non-infective. Visualization by cryo-EM shows viral envelope disruption similar to what has been observed with AMP activity against other viruses. Furthermore, we observed no cytotoxicity against primary cultures of oral epithelial cells. These results suggest a common or biomimetic mechanism, possibly due to the differences between the phospholipid head group makeup of viral envelopes and host cell membranes, thus underscoring the potential of this class of molecules as safe and effective broad-spectrum antiviral agents. We discuss how and why differing molecular features between 10 peptoid candidates may affect both antiviral activity and selectivity.

8.
PLoS One ; 15(11): e0241535, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-914232

RESUMO

The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) viral genome is an RNA virus consisting of approximately 30,000 bases. As part of testing efforts, whole genome sequencing of human isolates has resulted in over 1,600 complete genomes publicly available from GenBank. We have performed a comparative analysis of the sequences, in order to detect common mutations within the population. Analysis of variants occurring within the assembled genomes yields 417 variants occurring in at least 1% of the completed genomes, including 229 within the 5' untranslated region (UTR), 152 within the 3'UTR, 2 within intergenic regions and 34 within coding sequences.


Assuntos
Betacoronavirus/genética , Genoma Viral , Mutação , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Ligação Genética , Desequilíbrio de Ligação , Escore Lod , SARS-CoV-2 , Análise de Sequência de RNA , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA